Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nature ; 627(8004): 564-571, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418889

RESUMO

Numerous studies have shown reduced performance in plants that are surrounded by neighbours of the same species1,2, a phenomenon known as conspecific negative density dependence (CNDD)3. A long-held ecological hypothesis posits that CNDD is more pronounced in tropical than in temperate forests4,5, which increases community stabilization, species coexistence and the diversity of local tree species6,7. Previous analyses supporting such a latitudinal gradient in CNDD8,9 have suffered from methodological limitations related to the use of static data10-12. Here we present a comprehensive assessment of latitudinal CNDD patterns using dynamic mortality data to estimate species-site-specific CNDD across 23 sites. Averaged across species, we found that stabilizing CNDD was present at all except one site, but that average stabilizing CNDD was not stronger toward the tropics. However, in tropical tree communities, rare and intermediate abundant species experienced stronger stabilizing CNDD than did common species. This pattern was absent in temperate forests, which suggests that CNDD influences species abundances more strongly in tropical forests than it does in temperate ones13. We also found that interspecific variation in CNDD, which might attenuate its stabilizing effect on species diversity14,15, was high but not significantly different across latitudes. Although the consequences of these patterns for latitudinal diversity gradients are difficult to evaluate, we speculate that a more effective regulation of population abundances could translate into greater stabilization of tropical tree communities and thus contribute to the high local diversity of tropical forests.


Assuntos
Biodiversidade , Florestas , Mapeamento Geográfico , Árvores , Modelos Biológicos , Especificidade da Espécie , Árvores/classificação , Árvores/fisiologia , Clima Tropical
2.
Nat Ecol Evol ; 8(3): 400-410, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38200369

RESUMO

Mycorrhizae, a form of plant-fungal symbioses, mediate vegetation impacts on ecosystem functioning. Climatic effects on decomposition and soil quality are suggested to drive mycorrhizal distributions, with arbuscular mycorrhizal plants prevailing in low-latitude/high-soil-quality areas and ectomycorrhizal (EcM) plants in high-latitude/low-soil-quality areas. However, these generalizations, based on coarse-resolution data, obscure finer-scale variations and result in high uncertainties in the predicted distributions of mycorrhizal types and their drivers. Using data from 31 lowland tropical forests, both at a coarse scale (mean-plot-level data) and fine scale (20 × 20 metres from a subset of 16 sites), we demonstrate that the distribution and abundance of EcM-associated trees are independent of soil quality. Resource exchange differences among mycorrhizal partners, stemming from diverse evolutionary origins of mycorrhizal fungi, may decouple soil fertility from the advantage provided by mycorrhizal associations. Additionally, distinct historical biogeographies and diversification patterns have led to differences in forest composition and nutrient-acquisition strategies across three major tropical regions. Notably, Africa and Asia's lowland tropical forests have abundant EcM trees, whereas they are relatively scarce in lowland neotropical forests. A greater understanding of the functional biology of mycorrhizal symbiosis is required, especially in the lowland tropics, to overcome biases from assuming similarity to temperate and boreal regions.


Assuntos
Micorrizas , Árvores , Ecossistema , Solo , Nutrientes
3.
Science ; 383(6679): 219-225, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38207046

RESUMO

Biodiversity is declining globally, yet many biodiversity hotspots still lack comprehensive species conservation assessments. Using multiple International Union for Conservation of Nature (IUCN) Red List criteria to evaluate extinction risks and millions of herbarium and forest inventory records, we present automated conservation assessments for all tree species of the Atlantic Forest biodiversity hotspot, including ~1100 heretofore unassessed species. About 65% of all species and 82% of endemic species are classified as threatened. We rediscovered five species classified as Extinct on the IUCN Red List and identified 13 endemics as possibly extinct. Uncertainties in species information had little influence on the assessments, but using fewer Red List criteria severely underestimated threat levels. We suggest that the conservation status of tropical forests worldwide is worse than previously reported.


Assuntos
Espécies em Perigo de Extinção , Extinção Biológica , Florestas , Árvores , Animais , Biodiversidade
4.
PLoS One ; 16(12): e0261244, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34941927

RESUMO

Arboviruses are arthropod-dependent viruses to complete their zoonotic cycle. Among the transmitting arthropods, culicids stand out, which participate in the cycle of several arboviruses that can affect humans. The present study aimed to identify species of culicidae and to point out the risk of circulation, emergency, or reemergence of pathogenic arboviruses to humans in the region of the Jequitibá headquarters of the Parque Estadual dos Três Picos (PETP), in Cachoeiras de Macacu, state of Rio de Janeiro, Brazil. Sampling was carried out at five Sample Points (SP) demarcated on trails from the headquarters, with CDC light traps, HP model with dry ice attached to the side, for 48 hours of activity each month. Additionally, active catches were made with a castro catcher in the period of one hour per day in the field, from six to eleven o'clock in the morning, in each PM. After the captures, thematic map was assembled using the ArcGIS 10 software and performing a multidimensional scaling (MDS). A total of 1151 specimens were captured and the presence of culicids already incriminated as vectors of arboviruses circulating in the region was observed: Aedes fluviatilis Lutz, 1904 (71 specimens); Aedes scapularis Rondani, 1848 (55 specimens); Haemagogus leococelaenus Dyar and Shannon, 1924 (29 specimens). In addition to the subgenus Culex (culex) spp. (163 specimens). In this sense, we highlight the importance of strengthening the actions of continuous entomological surveillance of the emergence and re-emergence of new arboviruses in ecotourism visitation parks.


Assuntos
Infecções por Arbovirus/epidemiologia , Culicidae/virologia , Aedes/virologia , Animais , Arbovírus/patogenicidade , Brasil/epidemiologia , Dípteros/patogenicidade , Monitoramento Epidemiológico/veterinária , Mosquitos Vetores/virologia , Estações do Ano , Vigilância de Evento Sentinela/veterinária
5.
Nat Commun ; 12(1): 3137, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035260

RESUMO

Arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) associations are critical for host-tree performance. However, how mycorrhizal associations correlate with the latitudinal tree beta-diversity remains untested. Using a global dataset of 45 forest plots representing 2,804,270 trees across 3840 species, we test how AM and EcM trees contribute to total beta-diversity and its components (turnover and nestedness) of all trees. We find AM rather than EcM trees predominantly contribute to decreasing total beta-diversity and turnover and increasing nestedness with increasing latitude, probably because wide distributions of EcM trees do not generate strong compositional differences among localities. Environmental variables, especially temperature and precipitation, are strongly correlated with beta-diversity patterns for both AM trees and all trees rather than EcM trees. Results support our hypotheses that latitudinal beta-diversity patterns and environmental effects on these patterns are highly dependent on mycorrhizal types. Our findings highlight the importance of AM-dominated forests for conserving global forest biodiversity.


Assuntos
Biodiversidade , Florestas , Micorrizas/fisiologia , Árvores/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Dispersão Vegetal , Microbiologia do Solo , Árvores/microbiologia
6.
Nat Commun ; 11(1): 6347, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33311511

RESUMO

Tropical forests are being deforested worldwide, and the remaining fragments are suffering from biomass and biodiversity erosion. Quantifying this erosion is challenging because ground data on tropical biodiversity and biomass are often sparse. Here, we use an unprecedented dataset of 1819 field surveys covering the entire Atlantic Forest biodiversity hotspot. We show that 83-85% of the surveys presented losses in forest biomass and tree species richness, functional traits, and conservation value. On average, forest fragments have 25-32% less biomass, 23-31% fewer species, and 33, 36, and 42% fewer individuals of late-successional, large-seeded, and endemic species, respectively. Biodiversity and biomass erosion are lower inside strictly protected conservation units, particularly in large ones. We estimate that biomass erosion across the Atlantic Forest remnants is equivalent to the loss of 55-70 thousand km2 of forests or US$2.3-2.6 billion in carbon credits. These figures have direct implications on mechanisms of climate change mitigation.


Assuntos
Biodiversidade , Biomassa , Ecologia , Florestas , Clima Tropical , Argentina , Brasil , Ciclo do Carbono , Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Paraguai , Especificidade da Espécie , Árvores
7.
Proc Natl Acad Sci U S A ; 117(52): 33358-33364, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33318167

RESUMO

Forests are the largest terrestrial biomass pool, with over half of this biomass stored in the highly productive tropical lowland forests. The future evolution of forest biomass depends critically on the response of tree longevity and growth rates to future climate. We present an analysis of the variation in tree longevity and growth rate using tree-ring data of 3,343 populations and 438 tree species and assess how climate controls growth and tree longevity across world biomes. Tropical trees grow, on average, two times faster compared to trees from temperate and boreal biomes and live significantly shorter, on average (186 ± 138 y compared to 322 ± 201 y outside the tropics). At the global scale, growth rates and longevity covary strongly with temperature. Within the warm tropical lowlands, where broadleaf species dominate the vegetation, we find consistent decreases in tree longevity with increasing aridity, as well as a pronounced reduction in longevity above mean annual temperatures of 25.4 °C. These independent effects of temperature and water availability on tree longevity in the tropics are consistent with theoretical predictions of increases in evaporative demands at the leaf level under a warmer and drier climate and could explain observed increases in tree mortality in tropical forests, including the Amazon, and shifts in forest composition in western Africa. Our results suggest that conditions supporting only lower tree longevity in the tropical lowlands are likely to expand under future drier and especially warmer climates.


Assuntos
Longevidade , Temperatura , Árvores/anatomia & histologia , Árvores/fisiologia , Clima Tropical , Ecossistema , Geografia , Modelos Teóricos , Árvores/crescimento & desenvolvimento , Água
8.
J Am Mosq Control Assoc ; 36(2): 112-114, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33647127

RESUMO

Herein we report the first recorded arrival of Aedes aegypti on Trindade Island, approximately 1,140 km from the Brazilian coast, posing potential health risks to the human inhabitants thereof. The collection of mosquitoes was done from August to October 2019 via an active search for adults, eggs, and larvae by surveying objects with accumulated water and implantation of 23 ovitraps in different regions of the island. As a result, we collected 33 adults of Ae. aegypti via active search inside buildings. A total of 433 eggs of Ae. aegypti were also obtained from the ovitraps, all of which subsequently reached the adult stage. No other species of Culicidae was found.


Assuntos
Aedes , Espécies Introduzidas , Animais , Ilhas Atlânticas , Brasil
9.
Ecol Lett ; 22(2): 245-255, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30548766

RESUMO

Climate is widely recognised as an important determinant of the latitudinal diversity gradient. However, most existing studies make no distinction between direct and indirect effects of climate, which substantially hinders our understanding of how climate constrains biodiversity globally. Using data from 35 large forest plots, we test hypothesised relationships amongst climate, topography, forest structural attributes (stem abundance, tree size variation and stand basal area) and tree species richness to better understand drivers of latitudinal tree diversity patterns. Climate influences tree richness both directly, with more species in warm, moist, aseasonal climates and indirectly, with more species at higher stem abundance. These results imply direct limitation of species diversity by climatic stress and more rapid (co-)evolution and narrower niche partitioning in warm climates. They also support the idea that increased numbers of individuals associated with high primary productivity are partitioned to support a greater number of species.


Assuntos
Biodiversidade , Árvores , Clima
10.
Artigo em Inglês | MEDLINE | ID: mdl-30348879

RESUMO

Trophic rewilding has been suggested as a restoration tool to restore ecological interactions and reverse defaunation and its cascading effects on ecosystem functioning. One of the ecological processes that has been jeopardized by defaunation is animal-mediated seed dispersal. Here, we propose an approach that combines joint species distribution models with occurrence data and species interaction records to quantify the potential to restore seed-dispersal interactions through rewilding and apply it to the Atlantic Forest, a global biodiversity hotspot. Using this approach, we identify areas that should benefit the most from trophic rewilding and candidate species that could contribute to cash the credit of seed-dispersal interactions in a given site. We found that sites within large fragments bearing a great diversity of trees may have about 20 times as many interactions to be cashed through rewilding as small fragments in regions where deforestation has been pervasive. We also ranked mammal and bird species according to their potential to restore seed-dispersal interactions if reintroduced while considering the biome as a whole and at finer scales. The suggested approach can aid future conservation efforts in rewilding projects in defaunated tropical rainforests.This article is part of the theme issue 'Trophic rewilding: consequences for ecosystems under global change'.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Dispersão Vegetal , Floresta Úmida , Árvores/fisiologia , Distribuição Animal , Animais , Biodiversidade , Aves/fisiologia , Brasil , Mamíferos/fisiologia , Dispersão de Sementes , Clima Tropical
11.
Biometals ; 31(4): 571-584, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29736775

RESUMO

In the present work a family of novel secnidazole-derived Schiff base compounds and their copper(II) complexes were synthesized. The antimicrobial activities of the compounds were evaluated against clinically important anaerobic bacterial strains. The compounds exhibited in vitro antibacterial activity against Bacteroides fragilis, Bacteroides thetaiotaomicron, Bacteroides vulgatus, Bacteroides ovatus, Parabacteroides distasonis and Fusubacterium nucleatum pathogenic anaerobic bacteria. Upon coordination to copper(II) the antibacterial activity significantly increased in several cases. Some derivatives were even more active than the antimicrobial drugs secnidazole and metronidazole. Therefore, the compounds under study are suitable for in vivo evaluation and the microorganisms should be classified as susceptible to them. Electrochemical studies on the reduction of the nitro group revealed that the compounds show comparable reduction potentials, which are in the same range of the bio-reducible drugs secnidazole and benznidazole. The nitro group reduction potential is more favorable for the copper(II) complexes than for the starting ligands. Hence, the antimicrobial activities of the compounds under study might in part be related to intracellular bio-reduction activation. Considering the increasing resistance rates of anaerobic bacteria against a wide range of antimicrobial drugs, the present work constitutes an important contribution to the development of new antibacterial drug candidates.


Assuntos
Antibacterianos/farmacologia , Bactérias Anaeróbias/efeitos dos fármacos , Cobre/farmacologia , Nitroimidazóis/farmacologia , Bases de Schiff/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Cobre/química , Cristalografia por Raios X , Técnicas Eletroquímicas , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Nitroimidazóis/química , Bases de Schiff/química
12.
J Med Entomol ; 55(5): 1093-1097, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-29846652

RESUMO

Studies on the bioecology of Haemagogus leucocelaenus Dyar and Shannon 1924, Haemagogus janthinomys Dyar 1921, Aedes albopictus Skuse 1895 (Diptera: Culicidae) mosquitos are extremely important from an epidemiologic point of view, as they are known to be vectors of many important pathogens and, therefore, act as the main factor responsible for the maintenance of several zoonoses natural cycles. The present work aimed to elucidate their seasonal egg-hatching rate using the immersion method. Ovitraps were used to collect mosquito eggs from an Atlantic Forest fragment, in the State of Rio de Janeiro, Brazil, from November 2015 to November 2016. After collection, the eggs were immersed 40 times to assess their hatching rate and evaluate the number of immersions resulting in the highest hatchability during the study period. Differences in the proportion of hatched eggs between species and seasons (spring, summer, fall, winter) and in the numbers of immersions in which eggs hatched were assessed using odds ratios. Hg. leucocelaenus was the species with the highest number of eggs hatching in all sampling periods, followed by Ae. albopictus. Most Ae. albopictus eggs hatched on first immersion regardless of season. Both the numbers of eggs and the number of immersion in which the Haemagogus eggs hatched showed high variability within seasons. In spring, the proportion of eggs that hatched on the first compared to further immersions was similar, while in fall and winter a higher percentage (over 94%) of Hg. leucocelaenus eggs hatched on the first immersion; the opposite pattern was observed in the summer. These results differ from previous observations linking increased hatching to warmer months. The number of immersions in which Hg. leucocelaenus eggs hatched varied between seasons, however differences were not statistically significant. These results evidence the need for further studies to elucidate factors that influence hatching patterns.


Assuntos
Aedes/fisiologia , Óvulo/fisiologia , Animais , Clima Tropical , Água/fisiologia
13.
Glob Chang Biol ; 24(2): 597-607, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29095549

RESUMO

Despite the general recognition that fragmentation can reduce forest biomass through edge effects, a systematic review of the literature does not reveal a clear role of edges in modulating biomass loss. Additionally, the edge effects appear to be constrained by matrix type, suggesting that landscape composition has an influence on biomass stocks. The lack of empirical evidence of pervasive edge-related biomass losses across tropical forests highlights the necessity for a general framework linking landscape structure with aboveground biomass. Here, we propose a conceptual model in which landscape composition and configuration mediate the magnitude of edge effects and seed-flux among forest patches, which ultimately has an influence on biomass. Our model hypothesizes that a rapid reduction of biomass can occur below a threshold of forest cover loss. Just below this threshold, we predict that changes in landscape configuration can strongly influence the patch's isolation, thus enhancing biomass loss. Moreover, we expect a synergism between landscape composition and patch attributes, where matrix type mediates the effects of edges on species decline, particularly for shade-tolerant species. To test our conceptual framework, we propose a sampling protocol where the effects of edges, forest amount, forest isolation, fragment size, and matrix type on biomass stocks can be assessed both collectively and individually. The proposed model unifies the combined effects of landscape and patch structure on biomass into a single framework, providing a new set of main drivers of biomass loss in human-modified landscapes. We argue that carbon trading agendas (e.g., REDD+) and carbon-conservation initiatives must go beyond the effects of forest loss and edges on biomass, considering the whole set of effects on biomass related to changes in landscape composition and configuration.


Assuntos
Biomassa , Conservação dos Recursos Naturais/métodos , Florestas , Carbono , Modelos Biológicos , Árvores
14.
PLoS One ; 12(2): e0172495, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28241033

RESUMO

Disentangling the mechanisms that shape community assembly across diversity gradients is a central matter in ecology. While many studies have explored community assembly through species average trait values, there is a growing understanding that intraspecific trait variation (ITV) can also play a critical role in species coexistence. Classic biodiversity theory hypothesizes that higher diversity at species-rich sites can arise from narrower niches relative to species-poor sites, which would be reflected in reduced ITV as species richness increases. To explore how ITV in woody plant communities changes with species richness, we compiled leaf trait data (leaf size and specific leaf area) in a total of 521 woody plant species from 21 forest communities that differed dramatically in species richness, ranging from boreal to tropical rainforests. At each forest, we assessed ITV as an estimate of species niche breadth and we quantified the degree of trait overlap among co-occurring species as a measure of species functional similarity. We found ITV was relatively invariant across the species richness gradient. In addition, we found that species functional similarity increased with diversity. Contrary to the expectation from classic biodiversity theory, our results rather suggest that neutral processes or equalizing mechanisms can be acting as potential drivers shaping community assembly in hyperdiverse forests.


Assuntos
Biodiversidade , Folhas de Planta/fisiologia , Árvores , Florestas , Fenótipo
15.
Dalton Trans ; 46(3): 918-932, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-28009892

RESUMO

Complexes [In(2Ac4oClPh)Cl2(MeOH)] (1), [In(2Ac4pFPh)Cl2(MeOH)] (2), [In(2Ac4pClPh)Cl2(MeOH)] (3) and [In(2Ac4pIPh)Cl2(MeOH)] (4) were obtained with N(4)-ortho-chlorophenyl-2-acetylpyridine thiosemicarbazone (H2Ac4oClPh), N(4)-para-fluorophenyl-2-acetylpyridine thiosemicarbazone (H2Ac4pFPh), N(4)-para-chlorophenyl-2-acetylpyridine thiosemicarbazone (H2Ac4pClPh) and N(4)-para-iodophenyl-2-acetylpyridine thiosemicarbazone (H2Ac4pIPh). Theoretical studies suggested that the coordinated methanol molecule can be easily replaced by DMSO used in the preparation of stock solutions, with the formation of [In(L)Cl2(DMSO)] (HL = thiosemicarbazonate ligand), and that the replacement of DMSO by water is unfavorable. However, for all complexes the displacement of one or two chloride ligands by water in aqueous solution is extremely favorable. The cytotoxic activity of the compounds was evaluated against HL-60, Jurkat and THP-1 leukemia and against MDA-MB-231 and HCT-116 solid tumor cell lines, as well as against Vero non-malignant cells. The cytotoxicity and selectivity indexes (SI) increased in several cases for the indium(iii) complexes in comparison with the free thiosemicarbazones. The antimicrobial activity of the compounds was investigated against Candida albicans, Candida dubliniensis, Candida lusitaniae and Candida parapsilosis. In many cases complexation resulted in a substantial increase of the antifungal activity. Complexes (1-4) were revealed to be very active against C. lusitaniae and C. dubliniensis. Structure-activity relationship (SAR) studies were carried out to identify the physico-chemical properties that might be involved in the antifungal action, as well as in the cytotoxic effect of the compounds against HL-60 cells. In both cases, correlations between the bioactivity and physico-chemical properties did not appreciably change when the chloride ligands in [In(L)Cl2(DMSO)] were replaced by water molecules, suggesting [In(L)Cl(H2O)(DMSO)]+ or [In(L)(H2O)2(DMSO)]2+ to be the species that interact with the biological media.


Assuntos
Índio/química , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Tiossemicarbazonas/química , Animais , Antifúngicos/síntese química , Antifúngicos/química , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Candida/efeitos dos fármacos , Bovinos , Linhagem Celular Tumoral , DNA/metabolismo , Humanos , Concentração Inibidora 50 , Ligantes , Modelos Moleculares , Conformação Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/metabolismo , Relação Estrutura-Atividade
16.
Nature ; 530(7589): 211-4, 2016 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-26840632

RESUMO

Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha(-1)), corresponding to a net carbon uptake of 3.05 Mg C ha(-1) yr(-1), 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha(-1)) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.


Assuntos
Biomassa , Florestas , Árvores/crescimento & desenvolvimento , Clima Tropical , Carbono/metabolismo , Ciclo do Carbono , Sequestro de Carbono , Ecologia , Umidade , América Latina , Chuva , Fatores de Tempo , Árvores/metabolismo
17.
Oecologia ; 178(3): 855-66, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25761446

RESUMO

The stress gradient hypothesis (SGH) postulates how the balance between plant competition and facilitation shifts along environmental gradients. Early formulations of the SGH predicted that facilitation should increase monotonically with stress. However, a recent theoretical refinement of the SGH postulates stronger facilitation under moderate stress, followed by a decreasing role of facilitation in the most severe environments. We conducted field experiments along the most severe part of a coastal dune gradient in southeast Brazil to test the effect of stress on the intensity and importance of the net interactions between two tree species. First, we compared the performance of distinct life stages of Ternstroemia brasiliensis in the presence and absence of Guapira opposita adults along a beach-to-inland gradient, a gradient of environmental severity. To test the effect of one stress factor in particular, we also manipulated water availability, a limiting resource due to the sandy soils. At the most severe part of the coastal gradient (i.e. closest to the seashore), both intensity and importance of the interaction between G. opposita and T. brasiliensis were negatively related to stress, with a pattern consistent across distinct life stages of the target species. However, the sign of the net interaction depended on the life stage of the target species. Our results provide empirical evidence that the role of facilitation tends to wane, leading to neutral or even negative net interactions between species as stress reaches its maximum, as predicted by the recent refinements of the SGH.


Assuntos
Ecossistema , Nyctaginaceae , Plântula/crescimento & desenvolvimento , Estresse Fisiológico , Animais , Brasil , Meio Ambiente , Plantas , Árvores , Água/fisiologia
18.
Rev. bras. farmacogn ; 20(3): 403-408, jun.-jul. 2010. ilus, graf
Artigo em Inglês | LILACS | ID: lil-555922

RESUMO

The aim of this study was to determine whether eupafolin and hispidulin, flavones extracted from Eupatorium littorale Cabrera, Asteraceae, have the ability to change properties of biological membranes and promote cytotoxic effects. Eupafolin (50-200 µM) decreased approximately 30 percent the rate and total amplitude of valinomycin induced swelling and 60-100 percent the energy-dependent mitochondrial swelling. Moreover, eupafolin (200 µM) reduced 35 percent the mitochondrial permeability transition, and hispidulin did not change this parameter in any of the doses tested. The evaluation of phase transition of DMPC liposomes with the probe DPH demonstrated that hispidulin and eupafolin affect gel and fluid phase. With mitochondrial membrane as model, hispidulin increased the polarization of fluorescence when used DPH-PA probe. Eupafolin and hispidulin (100 µM) promoted a reduction of 40 percent in cellular viability of HeLa cells in 24 h. Our results suggest that eupafolin and hispidulin have cytotoxic effects that can be explained, in part, by alterations promoted on biological membranes properties and mitochondrial bioenergetics.


O objetivo deste estudo foi avaliar se eupafolina e hispidulina, flavonas extraídas do Eupatorium littorale Cabrera, Asteraceae, possuíam a capacidade de alterar propriedades das membranas biológicas e promover efeitos citotóxicos. Eupafolina (50-200 µM) reduziu em aproximadamente 30 por cento a velocidade e amplitude do inchamento mitocondrial induzido por valinomicina e 60-100 por cento o inchamento mitocondrial dependente de substrato. Além disso, eupafolina na dose de 200 µM reduziu a transição de permeabilidade mitocondrial em 35 por cento entretanto, a hispidulina não alterou este parâmetro em todas as doses testadas. A avaliação da transição de fase dos lipossomas de DMPC com a sonda DPH demonstrou que ambas as flavonas afetam a fase gel e fluida. Quando lipossomas de membranas mitocondriais e a sonda DPH-PA foram utilizados, houve aumento da polarização de fluorescência promovido pela hispidulina. Eupafolina e hispidulina, na dose de 100 µM, promoveram 40 por cento de redução da viabilidade de células HeLa em 24 h. Nossos resultados sugerem que eupafolina e hispidulina têm efeitos citotóxicos que podem ser explicados em parte pelas alterações promovidas por estas flavonas sobre propriedades de membranas biológicas e sobre a bioenergética mitocondrial.

19.
Nature ; 428(6979): 171-5, 2004 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-15014498

RESUMO

Amazonian rainforests are some of the most species-rich tree communities on earth. Here we show that, over the past two decades, forests in a central Amazonian landscape have experienced highly nonrandom changes in dynamics and composition. Our analyses are based on a network of 18 permanent plots unaffected by any detectable disturbance. Within these plots, rates of tree mortality, recruitment and growth have increased over time. Of 115 relatively abundant tree genera, 27 changed significantly in population density or basal area--a value nearly 14 times greater than that expected by chance. An independent, eight-year study in nearby forests corroborates these shifts in composition. Contrary to recent predictions, we observed no increase in pioneer trees. However, genera of faster-growing trees, including many canopy and emergent species, are increasing in dominance or density, whereas genera of slower-growing trees, including many subcanopy species, are declining. Rising atmospheric CO2 concentrations may explain these changes, although the effects of this and other large-scale environmental alterations remain uncertain. These compositional changes could have important impacts on the carbon storage, dynamics and biota of Amazonian forests.


Assuntos
Ecossistema , Árvores/fisiologia , Atmosfera/química , Brasil , Dióxido de Carbono/metabolismo , Ecologia , Dinâmica Populacional , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...